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Summary. We study the asymptotic properties of bridge estimators in sparse, high-

dimensional, linear regression models when the number of covariates may increase to

infinity with the sample size. We are particularly interested in the use of bridge estima-

tors to distinguish between covariates whose coefficients are zero and covariates whose

coefficients are nonzero. We show that under appropriate conditions, bridge estimators

correctly select covariates with nonzero coefficients with probability converging to one

and that the estimators of nonzero coefficients have the same asymptotic distribution

that they would have if the zero coefficients were known in advance. Thus, bridge es-

timators have an oracle property in the sense of Fan and Li (2001) and Fan and Peng

(2004). In general, the oracle property holds only if the number of covariates is smaller

than the sample size. However, under a partial orthogonality condition in which the co-

variates of the zero coefficients are uncorrelated or weakly correlated with the covariates

of nonzero coefficients, we show that marginal bridge estimators can correctly distin-

guish between covariates with nonzero and zero coefficients with probability converging

to one even when the number of covariates is greater than the sample size.
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asymptotic normality, oracle property.
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1 Introduction

Consider the linear regression model

Yi = β0 + x′iβ + εi, i = 1, . . . , n,

where Yi ∈ IR is a response variable, xi is a pn × 1 covariate vector, and the εi’s are i.i.d. random

error terms. Without loss of generality, we assume that β0 = 0. This can be achieved by centering

the response and covariates. We are interested in estimating the vector of regression coefficients

β ∈ IRpn when pn may increase with n and β is sparse in the sense that many of its elements are

zero. We estimate β by minimizing the penalized least squares objective function

Ln(β) =
n∑

i=1

(Yi − x′iβ)2 + λn

pn∑

j=1

|βj |γ , (1)

where λn is a penalty parameter. For any given γ > 0, the value β̂n that minimizes (1) is called

a bridge estimator (Frank and Friedman, 1993; Fu 1998). The bridge estimator includes two

important special cases. When γ = 2, it is the familiar ridge estimator (Hoerl and Kennard, 1970).

When γ = 1, it is the LASSO estimator (Tibshirani 1996), which was introduced as a variable

selection and shrinkage method. When 0 < γ ≤ 1, some components of the estimator minimizing

(1) can be exactly zero if λn is sufficiently large (Knight and Fu, 2000). Thus the bridge estimator

for 0 < γ ≤ 1 provides a way to combine variable selection and parameter estimation in a single

step.

Knight and Fu (2000) studied the asymptotic distributions of bridge estimators when the number

of covariates is finite. They showed that, for 0 < γ ≤ 1, under appropriate regularity conditions, the

limiting distributions can have positive probability mass at 0 when the true value of the parameter

is zero. Their results provide a theoretical justification for the use of bridge estimators to select
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variables (that is, to distinguish between covariates whose coefficients are exactly zero and covariates

whose coefficients are nonzero). In addition to bridge estimators, other penalization methods

have been proposed for the purpose of simultaneous variable selection and shrinkage estimation.

Examples include the SCAD penalty (Fan 1997; Fan and Li, 2001) and the Elastic-Net (Enet)

penalty (Zou and Hastie, 2005). For the SCAD penalty, Fan and Li (2001) studied asymptotic

properties of penalized likelihood methods when the number of parameters is finite. Fan and

Peng (2004) considered the same problem when the number of parameters diverges. Under certain

regularity conditions, they showed that there exist local maximizers of the penalized likelihood that

have an oracle property. Here the oracle property means that the local maximizers can correctly

select the nonzero coefficients with probability converging to one and that the estimators of the

nonzero coefficients are asymptotically normal with the same means and covariances that they

would have if the zero coefficients were known in advance. Therefore, the local maximizers are

asymptotically as efficient as the ideal estimator assisted by an oracle who knows which coefficients

are nonzero.

Several other studies have investigated the properties of regression estimators when the number

of covariates increases to infinity with sample size. See, for example, Huber (1981) and Portnoy

(1984, 1985). Portnoy (1984, 1985) provided conditions on the growth rate of pn that are sufficient

for consistency and asymptotic normality of a class of M-estimators of regression parameters. How-

ever, Portnoy did not consider penalized regression or selection of variables in sparse models. Bair,

Hastie, Paul and Tibshirani (2004) proved consistency of supervised principle components analysis

under a partial orthogonality condition, but they also did not consider penalized regression. There

have been several other studies of large sample properties of high-dimensional problems in settings

related to but different from ours. Examples include Van der Laan and Bryan (2001), Bühlmann

(2004), Fan, Peng and Huang (2005), Huang, Wang and Zhang (2005), Huang and Zhang (2005),

and Kosorok and Ma (2005).
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We study the asymptotic properties of bridge estimators with 0 < γ < 1 when the number of

covariates pn may increase to infinity with n. We are particularly interested in the use of bridge

estimators to distinguish between covariates with zero and nonzero coefficients. Our study extends

the results of Knight and Fu (2000) to infinite-dimensional parameter settings. We show that for

0 < γ < 1 the bridge estimators can correctly select covariates with nonzero coefficients and that,

under appropriate conditions on the growth rates of pn and λn, the estimators of nonzero coefficients

have the same asymptotic distribution that they would have if the zero coefficients were known in

advance. Therefore, bridge estimators have the oracle property of Fan and Li (2001) and Fan and

Peng (2004). The permitted rate of growth of pn depends on the penalty function form specified

by γ. We require that pn < n; that is, the number of covariates must be smaller than the sample

size.

The condition that pn < n is needed for identification and consistent estimation of the regres-

sion parameter. While this condition is often satisfied in applications, there are important settings

in which it is violated. For example, in studies of relationships between a phenotype and mi-

croarray gene expression profiles, the number of genes (covariates) is typically much greater than

the sample size, although the number of genes that are actually related to the clinical outcome

of interest is generally small. Often a goal of such studies is to find these genes. Without any

further assumption on the covariate matrix, the regression parameter is in general not identifiable

if pn > n. However, if there is suitable structure in the covariate matrix, it is possible to achieve

consistent variable selection and estimation. A special case is when the columns of the covariate

matrix X are mutually orthogonal. Then each regression coefficient can be estimated by univariate

regression. But in practice, mutual orthogonality is often too strong an assumption. Furthermore,

when pn > n, mutual orthogonality of all covariates is not possible, since the rank of X is at most

n− 1. We consider a partial orthogonality condition in which the covariates of the zero coefficients

are uncorrelated or only weakly correlated with the covariates of nonzero coefficients. We study a
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univariate version of the bridge estimator. We show that under the partial orthogonality condition

and certain other conditions, marginal bridge estimator can consistently distinguish between zero

coefficients and nonzero coefficients even when the number of covariates is greater than n, although

it does not yield consistent estimation of the parameters. After the covariates with nonzero coef-

ficients are consistently selected, we can use any reasonable method to consistently estimate their

coefficients, if the number of nonzero coefficients is relatively small, as is in sparse models. The

partial orthogonality condition appears to be reasonable in microarray data analysis, where the

genes that are correlated with the phenotype of interest may be in different functional pathways

from the genes that are not related to the phenotype (Bair et al. 2004).

The rest of this paper is organized as follows. In Section 2, we present asymptotic results for

bridge estimators with 0 < γ < 1 and pn →∞ as n →∞. We treat a general covariate matrix and a

covariate matrix that satisfies our partial orthogonality condition. In Section 3, we present results

for marginal bridge estimators under partial orthogonality condition. In Section 4, simulation

studies are used to assess the finite sample performance of bridge estimators. Concluding remarks

are given in Section 5. Proofs of the results stated in Sections 2 and 3 are given in Section 6.

2 Asymptotic properties of bridge estimators

Let the true parameter value be βn0. The subscript n indicates that βn0 depends on n, but for

simplicity of notation, we will simply write β0. Let β0 = (β′10,β
′
20)

′, where β10 is a kn × 1 vector

and β20 is a mn × 1 vector. Suppose that β10 6= 0 and β20 = 0, where 0 is the vector with

all components zero. So kn is the number of non-zero coefficients and mn is the number of zero

coefficients. We note that it is unknown to us which coefficients are non-zero and which are zero.

We partition β0 this way to facilitate the statement of the assumptions.

Let xi = (xi1, . . . , xipn)′ be the pn × 1 vector of covariates of the ith observation, i = 1, . . . , n.

We assume that the covariates are fixed. However, we note that for random covariates, the results
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hold conditionally on the covariates. We assume that the Yi’s are centered and the covariates are

standardized, i.e.,

n∑

i=1

Yi = 0,

n∑

i=1

xij = 0 and
1
n

n∑

i=1

x2
ij = 1, j = 1, . . . , pn. (2)

We also write xi = (w′
i, z

′
i)
′ where wi consists of the first kn covariates (corresponding to the nonzero

coefficients), and zi consists of the remaining mn covariates (those with zero coefficients). Let Xn,

X1n, and X2n be the matrices whose transposes are X′
n = (x1, . . . ,xn), X′

1n = (w1, . . . ,wn), and

X′
2n = (z1, . . . , zn), respectively. Let

Σn = n−1X′
nXn and Σ1n = n−1X′

1nX1n.

Let ρ1n and ρ2n be the smallest and largest eigenvalue of Σn, and let τ1n and τ2n be the smallest

and largest eigenvalues of Σ1n, respectively.

We now state the conditions for consistency and oracle efficiency of bridge estimators with

general covariate matrices.

(A1) εi, ε2, . . . are independent and identically distributed random variables with mean zero and

variance σ2, where 0 < σ2 < ∞.

(A2) (a) ρ1n > 0 for all n; (b) (pn + λnkn)(nρ1n)−1 → 0.

(A3) (a) λn(kn/n)1/2 → 0; (b) Let hn = (p1/2
n /ρ1n)n−1/2, then λnhγ

nρ2
1np−1

n →∞.

(A4) There exist constants 0 < b0 < b1 < ∞ such that

b0 ≤ min{|β1j |, 1 ≤ j ≤ kn} ≤ max{|β1j |, 1 ≤ j ≤ kn} ≤ b1.

(A5) (a) There exist constants 0 < τ1 < τ2 < ∞ such that τ1 ≤ τ1n ≤ τ2n ≤ τ2 for all n;
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(b)

n−1/2 max
1≤i≤n

w′
iwi → 0.

Condition (A1) is standard in linear regression models. Condition (A2a) implies that the matrix

Σn is nonsingular for each n. But it permits ρ1n → 0 as n →∞. As we will see in Theorem 2, ρ1n

affects the rate of convergence of the bridge estimators. Condition (A2b) is used in the consistency

proof. Condition (A3) is needed in the proofs of the rate of convergence, oracle property, and

asymptotic normality. To get a better sense of this condition, suppose that 0 < c1 < ρ1n ≤ ρ2n <

c2 < ∞ for some constants c1 and c2 for all n and that the number of nonzero coefficients is finite,

(A3) simplifies to

(A3)∗ (a) λnn−1/2 → 0; (b) λ2
nn−γp

−(2−γ)
n →∞.

Condition (A3a)∗ states that the penalty parameter λn must always be o(n1/2). Suppose that

λn = n(1−δ)/2 for a small δ > 0. Then (A3b)∗ requires that p2−γ
n /n1−δ−γ → 0. So the smaller

the γ, the larger pn is allowed. This condition excludes γ = 1, which corresponds to the LASSO

estimator. If pn is finite, then this condition is the same as that assumed by Knight and Fu

(2000, p. 1361). Condition (A4) assumes that the nonzero coefficients are uniformly bounded

away from zero and infinity. Condition (A5a) assumes that the matrix Σ1n is strictly positive

definite. In sparse problems, kn is small relative to n, so this this assumption is reasonable in

such problems. Condition (A5b) is needed in the proof of asymptotic normality of the estimators

of nonzero coefficients. Under condition (A3a), this condition is satisfied if all the covariates

corresponding to the nonzero coefficients are bounded by a constant C. This is because, under

(A3a), n−1/2 max1≤i≤n w′
iwi ≤ n−1/2knC → 0.

In the following, the L2 norm of any vector u ∈ Rpn is denoted by ‖u‖; i.e., ‖u‖ = [
∑pn

j=1 u2
j ]

1/2.

Theorem 1 (Consistency). Let β̂n denote the minimizer of (1). Suppose that γ > 0 and that con-

ditions (A1a), (A2), (A3a) and (A4) hold. Let h1n = [(pn +λnkn)/(nρ1n)]1/2, h2n = ρ−1
1n (pn/n)1/2,
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and hn = min{h1n, h2n}. Then

‖β̂n − β0‖ = Op(hn).

We note that ρ
1/2
1n and ρ1n appear in the denominators of h1n and h2n, respectively. Therefore, h2n

may not converge to zero faster than h1n if ρ1n → 0. If ρ1n > ρ1 > 0 for all n, Theorem 1 yields

the rate of convergence Op(h2n) = Op((pn/n)1/2). If pn is finite and ρ1n > ρ1 > 0 for all n, then

the rate of convergence is the familiar n−1/2. However, if ρ1n → 0, the rate of convergence will be

slower than n−1/2.

This result is related to the consistency result of Portnoy (1984). If ρ1n > ρ1 > 0 for all n,

which Portnoy assumed, then the rate of convergence in Theorem 1 is the same as that in Theorem

3.2 of Portnoy (1984). Here, however, we consider penalized least squares estimators, whereas

Portnoy considered general M-estimators in a linear regression model without penalty. In addition,

Theorem 1 is concerned with the minimizer of the objective function (1). In comparison, Theorem

3.2 of Portnoy shows that there exists a root of an M-estimating equation with convergence rate

Op((pn/n)1/2).

Theorem 2 (Oracle property). Let β̂n = (β̂1n, β̂2n), where β̂1n and β̂2n are estimators of β10 and

β20, respectively. Suppose that 0 < γ < 1 and that conditions (A1) to (A5) are satisfied. We have

(i) β̂2n = 0 with probability converging to 1.

(ii) Let s2
n = σ2α′nΣ−1

1n αn for any kn × 1 vector αn satisfying ‖αn‖2 ≤ 1. Then

n1/2s−1
n α′n(β̂1n − β10) = n−1/2s−1

n

n∑

i=1

εiα
′
nΣ−1

1n wi + op(1) →D N(0, 1), (3)

where op(1) is a term that converges to zero in probability uniformly with respect to αn.

Theorem 2 states that the estimators of the zero coefficients are exactly zero with high prob-

ability when n is large and that the estimators of the non-zero parameters have same asymptotic

distribution that they would have if the zero coefficients were known. This result is stated in a
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way similar to Theorem 2 of Fan and Peng (2004). Fan and Peng considered maximum penalized

likelihood estimation. Their results are concerned with local maximizers of the penalized likelihood.

These results do not imply existence of an estimator with the properties of the local maximizer

without auxiliary information about the true parameter value that enables one to choose the lo-

calization neighborhood. In contrast, our Theorem 2 is for the global minimizer of the penalized

least squares objective function, which is a feasible estimator. In addition, Fan and Peng (2004)

require that the number of parameters, pn, to satisfy p5
n/n → 0, which is more restrictive than our

assumption for the linear regression model.

Let β̂1nj and β10j be the jth components of β̂1n and β10, respectively. Set take αn = ej in

Theorem 2, where ej is the unit vector whose only nonzero element is the jth element and let

s2
nj = σ2e′jΣ

−1
1n ej . Then we have

n1/2s−1
nj (β̂1nj − β10j) →D N(0, 1).

Thus Theorem 2 provides asymptotic justification for the following steps to compute an approximate

standard error of β̂1nj : (i) Compute the bridge estimator for a given γ; (ii) treat the zero estimates

as if they were fixed values; (iii) compute a consistent estimator σ̂2 of σ2 based on the sum of

residual squares; (iv) compute ŝ−1
nj = σ̂(e′jΣ

−1
1n ej)1/2, which gives an approximate standard error of

β̂1nj .

Theorem 1 holds for any γ > 0. However, Theorem 2 assumes that γ is strictly less than 1,

which excludes the LASSO estimator.
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3 Asymptotic properties of marginal bridge estimators under par-

tial orthogonality condition

Although the results in Section 2 allow the number of covariates pn → ∞ as the sample size

n → ∞, they require that pn < n. In this section, we show that under a partial orthogonality

condition on the covariate matrix, we can consistently identify the covariates with zero coefficients

using a marginal bridge objective function, even when the number of covariates increases almost

exponentially with n. The precise statement of partial orthogonality is given in condition (B2)

below.

The marginal bridge objective function is

Un(β) =
pn∑

j=1

n∑

i=1

(Yi − xijβj)2 + λn

pn∑

j=1

|βj |γ . (4)

Let β̃n be the value that minimizes Un. Write β̃n = (β̃
′
n1, β̃

′
n2)

′ according to the partition β0 =

(β′10, β
′
20)

′. Let Kn = {1, . . . , kn} and Jn = {kn + 1, . . . , pn} be the set of indexes of nonzero and

zero coefficients, respectively. Let

ξnj = n−1E

(
n∑

i=1

Yixij

)
= n−1

n∑

i=1

(w′
iβ10)xij . (5)

which is the “covariance” between the jth covariate and the response variable. With the centering

and standardization given in (2), ξnj/σ is the correlation coefficient.

(B1) (a) εi, ε2, . . . are independent and identically distributed random variables with mean zero

and variance σ2, where 0 < σ2 < ∞; (b) εi’s are sub-Gaussian, that is, its tail probabilities satisfy

P (|εi| > x) ≤ K exp(−Cx2), i = 1, 2, . . . for constants C and K.
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(B2) (a) There exists a constant c0 > 0 such that

∣∣∣∣∣n
−1/2

n∑

i=1

xijxik

∣∣∣∣∣ ≤ c0, j ∈ Jn, k ∈ Kn,

for all n sufficiently large. (b) There exists a constant ξ0 > 0 such that mink∈Kn |ξnj | > ξ0 > 0.

(B3) (a) λn/n → 0 and λnn−γ/2kγ−2
n →∞; (b) log(mn) = o(1)(λnn−γ/2)2/(2−γ).

(B4) There exist constants 0 < b1 < ∞ such that maxk∈Kn |β1k| ≤ b1.

Condition (B1b) assumes that the tails of the error distribution behave like normal tails. Thus

it excludes heavy-tailed distributions. Condition (B2a) assumes that the covariates of the nonzero

coefficients and the covariates of the zero coefficients are only weakly correlated. Condition (B2b)

requires that the correlations between the covariates with nonzero and the dependent variable are

bounded away from zero. Condition (B3a) puts restriction on the penalty parameter λn and the

number of nonzero coefficients kn. For λn, we must have λn = o(n). For such a λn, λnn−γ/2kγ−2
n =

o(1)n(2−γ)/2kγ−2
n = o(1)(n1/2/kn)2−γ . Thus kn must satisfy kn/n1/2 = o(1). (B3b) puts restriction

on the number of zero coefficients mn. To get a sense how large mn can be, we note that λn can

be as large as λn = o(n). Thus log(mn) = o(1)(n(2−γ)/2)2/(2−γ) = o(1)n. So mn can be of the

order exp(o(n)). This certainly permits mn/n → ∞ and hence pn/n → ∞ as n → ∞. Similar

phenomena occur in Van der Laan and Bryan (2001) and Kosorok and Ma (2005) for uniformly

consistent marginal estimators under different “large p, small n” data settings. On the other hand,

the number of nonzero coefficients kn still must be smaller than n

Theorem 3 Suppose that conditions (B1) to (B4) hold and that 0 < γ < 1. Then

P
(
β̃n2 = 0

)
→ 1, and P

(
β̃n1k 6= 0, k ∈ Kn

)
→ 1.

This theorem says that marginal bridge estimators can correctly distinguish between covariates

with nonzero and zero coefficients with probability converging to one. However, the estimators
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of the nonzero coefficients are not consistent. To obtain consistent estimators, we use a two-

step approach. First, we use the marginal bridge estimator to select the covariates with nonzero

coefficients. Then we estimate the regression model with the selected covariates. In the second

step, any reasonable regression method can be used. The choice of method is likely to depend on

the characteristics of the data at hand, including the number of nonzero coefficients selected in

the first step, the properties of the design matrix, and the shape of the distribution of the εi’s. A

two-step approach different from the one proposed here was also used by Bair et al. (2004) in their

approach for supervised principle component analysis.

We now consider the use of the bridge objective function for second-stage estimation of β10, the

vector of nonzero coefficients. Since the zero coefficients are correctly identified with probability

converging to one, we can assume that only the covariates with nonzero coefficients are included

in the model in the asymptotic analysis of the second step estimation. Let β̂
∗
1n be the estimator

in the step. Then, for the purpose of deriving its asymptotic distribution, it can be defined as the

value that minimizes

U∗
n(β1) =

n∑

i=1

(yi −w′
iβ1)

2 + λ∗n
kn∑

j=1

|βj |γ . (6)

In addition to conditions (B1) to (B4), we assume

(B5) (a) There exist a constant τ1 > 0 such that τ1n ≥ τ1 for all n sufficiently large;

(b) The covariates of nonzero coefficients satisfy n−1/2 max1≤i≤n w′
iwi → 0.

(B6) (a) kn(1 + λ∗n)/n → 0; (b) λ∗n(kn/n)1/2 → 0.

These two conditions are needed for the asymptotic normality of β̂
∗
1n. Compared to condition

(A5a), (B5a) assumes that the smallest eigenvalue of Σ1n is bounded below from zero, but does not

assume that its largest eigenvalue is bounded. Condition (B5b) is the same as (A5b). In condition

(B6), we can set λ∗n = 0 for all n. Then β̂
∗
1n is the OLS estimator. Thus Theorem 4 below is

applicable to the OLS estimator. When λ∗n is set to be zero, then (B6a) becomes kn/n → 0 and
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(B6b) is satisfied for any value of kn. Condition (B5b) also puts restriction on kn implicitly. For

example, if the covariates in wi are bounded below by a constant w0 > 0, then w′
iwi ≥ knw2

0. So

for (B5b) to hold, we must have knn−1/2 → 0.

Theorem 4 Suppose that conditions (B1) to (B6) hold and that 0 < γ < 1. Let s2
n = σ2α′nΣ−1

1n αn

for any kn × 1 vector αn satisfying ‖αn‖2 ≤ 1. Then

n1/2s−1
n α′n(β̂

∗
1n − β10) = n−1/2s−1

n

n∑

i=1

εiα
′
nΣ−1

1n wi + op(1) →D N(0, 1), (7)

where op(1) is a term that converges to zero in probability uniformly with respect to αn.

4 Numerical Studies

4.1 Computation of bridge estimators

The penalized objective function (1) is not differentiable when β has zero components. This singu-

larity causes standard gradient based methods to fail. Motivated by the method of Fan and Li (2001)

and Hunter and Li (2005), we approximate the bridge penalty by a function that has finite gradient

at zero. Specifically, we approximate the bridge penalty function by
∑pn

j=1

∫ βj

−∞[sgn(u)/(|u|1/2 +

η)]du for a small η > 0. We note this function and its gradient converge to the bridge penalty and

its gradient as η → 0, respectively.

Let p = pn be the number of covariates. Let β̂
(m)

be the value of the mth iteration from

the optimization algorithm, m = 0, 1, . . .. Let τ be a prespecified convergence criterion. We set

τ = 10−4 in our numerical studies. We conclude convergence if max1≤j≤p |β̂(m)
j − β̂

(m+1)
j | ≤ τ , and

conclude β̂
(m)
j = 0, if |β̂(m)

j | ≤ τ . Denote yn = (Y1, . . . , Yn).

Initialize β̂
(0)

= 0 and η = τ . For m = 0, 1, . . .,

1. Compute the gradient of the sum of the squares g1 = X′
n(yn−Xnβ̂

(m)
) and the approximate
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gradient of the penalty

g2(η) =
1
2
λ

(
sgn(β̂(m)

1 )/(|β̂(m)
1 |1/2 + η), . . . , sgn(β̂(m)

p )/(|β̂(m)
p |1/2 + η)

)′
.

Here g1 and g2 are p× 1 vectors, with jth components g1j and g2j , respectively. Note we use

the notation g2(η) to emphasize that the approximate gradient depends on η.

2. Compute the gradient g whose jth component, gj , is defined as

if |β̂(m)
j | > τ, gj = g1j + g2j(η);

if |β̂(m)
j | ≤ τ, gj = g1j + g2j(η∗),

where η∗ = arg max
j:0<|bβ(m)

j |≤τ
|g1j/g2j(η)|. In this way, we guarantee that for the zero

estimates, the corresponding components in g2 dominate the corresponding components in

g1. Update η = η∗.

3. Re-scale g = g/maxj |gj |, such that its maximum component (in terms of absolute value) is

less than or equal to 1. This step and the previous one guarantee that the increment in the

components of β is less than τ , the convergence criteria.

4. Update β̂
(m+1)

= β̂
(m)

+ ∆ × g, where ∆ is the increment in this iterative process. In our

implementation we used ∆ = 2× 10−3.

5. Replace m by m + 1 and repeat steps 1–5 until convergence.

Extensive simulation studies show that estimates obtained using this algorithm are well-behaved

and convergence is achieved under all simulated settings.
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4.2 Computation of marginal bridge estimators

For a given penalty parameter λn, minimization of the marginal objective function Un defined in

(4) amounts to solving a series of univariate minimization problems. Furthermore, since marginal

bridge estimators are used only for variable selection, we do not need to solve the minimization

problem. We only need to determine which coefficients are zero and which are not.

The objective function of each univariate minimization problem can be written in the form

g(u) = u2 − 2au + λ|u|γ ,

where |a| > 0. By Lemma A of Knight and Fu (2000), arg min(g) = 0 if and only if,

λ >

(
2

2− γ

)(
2(1− γ)
2− γ

)1−γ

|a|2−γ .

Therefore computation for variable selection based on marginal bridge estimators can be done very

quickly.

4.3 Simulation study

This section describes simulation studies that were used to evaluate the finite sample performance

of the bridge estimator. We investigate three features: (i) variable selection; (ii) prediction; and

(iii) estimation. For (i), we measure variable selection performance by the frequency of correctly

identifying zero and non-zero coefficients in repeated simulations. For (ii), we measure prediction

performance using prediction mean square errors (PMSE) which is calculated based on the predicted

values and observed values of the response from the independent data not used in model fitting.

Because the bridge estimator has the oracle property, it should also perform well in terms of

prediction. For (iii), we measure estimation performance using the estimation mean square errors

(EMSE) of the estimator which is calculated based on the estimated values and the generating
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values of the parameters.

For comparison of prediction performance, we compare the PMSE of the bridge estimator to the

ordinary least squares (OLS) when applicable, ridge regression (RR), LASSO, and Enet estimators.

We assess the oracle property based on the variable selection results and the EMSE. For the bridge

estimator, we set γ = 1/2. The RR, LASSO and elastic-net estimators are computed using the

publicly available R packages (http://www.r-project.org). The bridge estimator is computed using

the algorithm described in Section 4.1. The simulation scheme is close to the one in Zou and Hastie

(2005), but differs in that the covariates are fixed instead of random.

We simulate data from the model

y = x′β + ε, ε ∼ N(0, σ2).

Ten examples are considered, representing ten different and commonly encountered scenarios. In

each example, the covariate vector x is generated from a multivariate normal distribution whose

marginal distributions are standard N(0, 1) and whose covariance matrix is given in the description

below. The value of x is generated once and then kept fixed. Replications are obtained by simulating

the values of ε from N(0, σ2) and then setting y = x′β+ ε for the fixed covariate value x. Summary

statistics are computed based on 500 replications.

The ten simulation models are

Example 1: p = 30 and σ = 1.5. The pairwise correlation between the ith and the jth

components of x is r|i−j| with r = 0.5. Components 1–5 of β are 2.5; components 6–10 are

1.5; components 11–15 are 0.5 and the rest as zero. So there are 15 nonzero covariate effects:

five large effects, five moderate effects, and five small effects.

Example 2: The same as Example 1, except that r = 0.95.

Example 3: The same as Example 1, except that σ = 5.
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Example 4: The same as Example 3, except that r = 0.95.

Example 5: p = 30 and σ = 1.5. The predictors in Example 5 are generated as follows:

xi = Z1 + ei, Z1 ∼ N(0, 1), i = 1, . . . , 5;

xi = Z2 + ei, Z2 ∼ N(0, 1), i = 6, . . . , 10;

xi = Z3 + ei, Z3 ∼ N(0, 1), i = 11, . . . , 15;

Xi ∼ N(0, 1), Xi i.i.d. i = 16, . . . , 30,

where ei are i.i.d N(0, 0.01), i = 1, . . . , 15. The first 15 components of β are 1.5, the remaining

ones are zero.

Examples 6: p = 200 and σ = 1.5. The first 15 covariates (x1, . . . , x15) and the remaining 185

covarites (x16, . . . , x200) are independent. The pairwise correlation between the ith and the jth

components of (x1, . . . , x15) is r|i−j| with r = 0.5, i, j = 1, . . . , 15. The pairwise correlation be-

tween the ith and the jth components of (x16, . . . , x200) is r|i−j| with r = 0.5, i, j = 16, . . . , 200.

Components 1–5 of β are 2.5, components 6–10 are 1.5, components 11–15 are 0.5, and the

rest are zero. So there are 15 nonzero covariate effects–five large effects, five moderate effects,

and five small effects. The covariate matrix has the partial orthogonal structure.

Example 7: The same as Example 6, except that r = 0.95.

Example 8: The same as Example 6, except that σ = 5.

Example 9: The same as Example 8, except that r = 0.95.

Example 10: p = 500 and σ = 1.5. The first 15 coviariates are generated the same way as in

Example 5. The remaining 485 covariates are independent of the first 15 covariates and are

generated independently from N(0, 1). The first 15 coefficients equal 1.5, and the remaining

485 coefficients are zero.
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The examples with ρ = 0.5 have weak to moderate correlation among covariates, whereas

those with ρ = 0.95 have moderate to strong correlations among covariates. Examples 5 and 10

correspond to the “grouping effects” in Zou and Hastie (2005) with three equally important groups.

In Examples 5 and 10, covariates within the same group are highly correlated and the pairwise

correlation coefficients are as high as 0.99. Therefore, there is particularly strong colinearity among

the covariates in these two examples.

Following the simulation approach of Zou and Hastie (2005), in each example, the simulated

data consist of a training set, an independent validation set, and an independent test set, each

of size 100. Tuning parameter is selected using the same simple approach as in Zou and Hastie

(2005). We first fit the models with a given tuning parameter using the training set data only. We

then compute the PMSE for the validation data based on the training set estimate. We search

over the penalty parameter space and the choose the one corresponding to the smallest PMSE for

the validation set as the final penalty parameter. Using this penalty parameter and the model

estimated based on the training set, we compute the PMSE for the testing set. We also compute

the probabilities that the estimators correctly identify covariates with nonzero and zero coefficients.

In Examples 1–5, the number of covariates is less than the sample size, so we use the bridge

approach directly with the algorithm of Section 4.1. In Examples 6–10, the number of covariates

is greater than the sample size. We use the two-step approach described in Section 3. We first

select the nonzero covariates using the marginal bridge method. The number of nonzero covariates

identified is much less than the sample size. In the second step, we use OLS.

Summary statistics of the variable selection and PMSE results based on 500 replicates are shown

in Table 1. We see that the numbers of nonzero covariates selected by the bridge estimators are

close to the true value (=15) in all examples. This agrees with the consistent variable selection

result of Theorem 2. On average, the bridge estimator out-performs LASSO and ENet in terms of

variable selection. Table 1 also gives the PMSEs of the Bridge, RR, LASSO and Enet estimators.
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For the OLS (when applicable), LASSO, ENet and Bridge, the PMSEs are mainly caused by the

variance of the random error. So the PMSEs are close, in general with the Enet and bridge being

better than the LASSO and OLS. The RR is less satisfactory in Examples 6–10 with 200 covariates.

We show in Figures 1 and 2 the frequencies of individual covariate effects being correctly “clas-

sified”: zero versus nonzero. For better resolution, we only plot the first 30 covariates for Examples

6–10. We can see that the bridge estimator can effectively identify large and moderate nonzero

covariate effects and zero covariate effects. However, it did not do well in identifying small nonzero

covariate effects in Examples 3 and 8. This is caused by the fact that it penalizes small coefficient

values excessively.

Simulation studies were also carried out to investigate the asymptotic oracle property of the

bridge estimator. This property says that bridge estimators have the same asymptotic efficiency as

the estimator obtained under the knowledge of which coefficients are nonzero and which are zero.

To evaluate this property, we consider three estimators: OLS using the covariates with nonzero

coefficients only (OLS-oracle); the bridge estimator using the covariates with nonzero coefficients

(bridge-oracle); and the bridge estimator using all the covariates. We note that the OLS-oracle

and bridge-oracle estimators cannot be used in practice. We use them here only for the purpose of

comparison. We use the same ten examples as described above.

Table 2 presents the summary statistics based on 500 replications. In Examples 1–5, the bridge

estimator performs similarly as the bridge-oracle estimator. In Examples 6–10, the bridge estimator

is similar to the OLS-oracle estimator. In Examples 2, 4, and 5 where the covariates are highly

correlated, the OLS-oracle estimators have considerably larger EMSE than the bridge-oracle and

bridge estimators. In Examples 7, 9, and 10, the OLS-oracle estimators and the two-step estimators

have considerably larger EMSE then the Bridge-oracle estimators. This is due to the fact that OLS

estimators tend to perform poorly when there is strong colinearity among covariates. The simulation

results from these examples also suggest that in finite sample, bridge estimators provide substantial
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improvement over the OLS estimators in terms of EMSE in the presence of strong colinearity.

5 Concluding remarks

In this paper, we have studied the asymptotic properties of bridge estimators when the number of

covariates and regression coefficients increases to infinity as n → ∞. We have shown that when

0 < γ < 1, bridge estimators correctly identify zero coefficients with probability converging to

one and that the estimators of nonzero coefficients are asymptotically normal and oracle efficient.

Our results generalize the results of Knight and Fu (2000) who studied the asymptotic behavior of

LASSO-type estimators in the finite-dimensional regression parameter setting. Theorems 1 and 2

were obtained under the assumption that the number of parameters is smaller than the sample size,

as described in conditions (A2) and (A3). They are not applicable when the number of parameters

is greater than the sample size, which arises in microarray gene expression studies. Accordingly, we

have also considered a marginal bridge estimator under the partial orthogonality condition in which

the covariates of zero coefficients are orthogonal to or only weakly correlated with the covariates

with nonzero coefficients. The marginal bridge estimator can consistently distinguish covariates

with zero and nonzero coefficients even when the number of zero coefficients is greater than the

sample size. Indeed, the number of zero coefficients can be in the order of exp(o(n)).

We have proposed a gradient based algorithm for computing bridge estimators. Our simulation

study suggests this algorithm converges reasonably rapidly. It also suggests that the bridge estima-

tor with γ = 1/2 behaves well in our simulated models. The bridge estimator correctly identifies

zero coefficients with higher probability than do the LASSO and Elastic-net estimators. It also

performs well in terms of predictive mean square errors. Our theoretical and numerical results

suggest that the bridge estimator with 0 < γ < 1 is a useful alternative to the existing methods for

variable selection and parameter estimation with high-dimensional data.
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6 Proofs

In this section, we give the proofs of the results stated in Sections 2 and 3. For simplicity of notation

and without causing confusion, we write Xn, X1n, and X2n as X, X1, and X2.

We first prove the following lemma which will be used in the proof of Theorem 1.

Lemma 1 Let u be a pn × 1 vector. Under condition (A1a),

E sup
‖u‖<δ

∣∣∣∣∣
n∑

i=1

εix′iu

∣∣∣∣∣ ≤ δσn1/2p1/2
n .

Proof. By the Cauchy-Schwartz inequality and condition (A1), we have

E sup
‖u‖≤δ

∣∣∣∣∣
n∑

i=1

εix′iu

∣∣∣∣∣
2

≤ E sup
‖u‖≤δ

‖u‖2

∥∥∥∥∥
n∑

i=1

εixi

∥∥∥∥∥
2

≤ δ2E

[
n∑

i=1

εix′i
n∑

i=1

εixi

]

= δ2σ2
n∑

i=1

x′ixi

= δ2σ2n trace

(
n−1

n∑

i=1

xix′i

)

= δ2σ2npn.

Thus the lemma follows by using the Cauchy-Schwartz inequality one more time.

Proof of Theorem 1 We first show that

‖β̂n − β0‖ = Op

(
pn + λnkn

nρ1n

)1/2

. (8)
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By the definition of β̂n,

n∑

i=1

(Yi − x′iβ̂n)2 + λn

pn∑

j=1

|β̂j |γ ≤
n∑

i=1

(Yi − x′iβ0)
2 + λn

pn∑

j=1

|β0j |γ .

It follows that
n∑

i=1

(Yi − x′iβ̂n)2 ≤
n∑

i=1

(Yi − x′iβ0)
2 + λn

pn∑

j=1

|β0j |γ .

Let ηn = λn
∑pn

j=1 |β0j |γ , then

ηn ≥
n∑

i=1

(Yi − x′iβ̂n)2 −
n∑

i=1

(Yi − x′iβ0)
2

=
n∑

i=1

[x′i(β̂n − β0)]
2 + 2

n∑

i=1

εixi(β0 − β̂n).

Let δn = (Σn)1/2(β̂n − β0), Dn = (Σn)−1/2X′ and εn = (ε1, . . . , εn)′. Then

n∑

i=1

[x′i(β̂n − β0)]
2 + 2

n∑

i=1

εix′i(β0 − β̂n) = δ′nδn − 2(Dnεn)′δn.

So we have δ′nδn − 2(Dnε)′δn − ηn ≤ 0. That is

‖δn −Dnεn‖2 − ‖Dnεn‖2 − ηn ≤ 0.

Therefore, ‖δn −Dnεn‖ ≤ ‖Dnεn‖+ η
1/2
n . By the triangle inequality,

‖δn‖ ≤ ‖δn −Dnεn‖+ ‖Dnεn‖ ≤ 2‖Dnεn‖+ η1/2
n .

It follows that

‖δn‖2 ≤ 6‖Dnεn‖2 + 3ηn.
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Let di be the ith column of Dn. Then Dnε =
∑n

i=1 diεi. Since Eεiεj = 0 if i 6= j,

E‖Dnεn‖2 =
n∑

i=1

‖di‖2Eε2
i = σ2

n∑

i=1

‖di‖2 = σ2tr(DnD′
n) = σ2pn.

So we have

E‖δn‖2 ≤ 6σ2pn + 3ηn.

That is

E[(β̂n − β0)
′Σn(β̂n − β0)] ≤ 6σ2pn + 3ηn. (9)

Since the number of nonzero coefficients is kn,

ηn = λn

pn∑

j=1

|β0j |γ = O(λnkn).

Noting that ρ1n is the smallest eigenvalue of Σ1n, (8) follows from (9).

We now show that

‖β̂n − β0‖ = Op(ρ−1
1n (pn/n)1/2). (10)

Let rn = ρ1n(n/pn)1/2. The proof of (10) follows that of Theorem 3.2.5 of Van der Vaart and

Wellner (1996). For each n, partition the parameter space (minus β0) into the “shells” Sj,n = {β :

2j−1 < rn‖β − β0‖ < 2j} with j ranging over the integers. If rn‖β̂n − β0‖ is larger than 2M for

a given integer M , then β̂n is in one of the shells with j ≥ M . By the definition of β̂n that it

minimizes Ln(β), for every ε > 0,

P(rn‖β̂n − β0‖ > 2M ) =
∑

j≥M,2j≤εrn

P( inf
β∈Sj,n

(Ln(β)− Ln(β0)) ≤ 0) + P(2‖β̂n − β0‖ ≥ ε).

Because β̂n is consistent by (8) and condition (A2), the second term on the right side converges to
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zero. So we only need to show that the first term on the right side converges to zero. Now

Ln(β)− Ln(β0)

=
n∑

i=1

(Yi − x′iβ)2 + λn

kn∑

j=1

|β1j |γ + λn

mn∑

j=1

|β2j |γ −
n∑

i=1

(Yi −w′
iβ10)

2 − λn

kn∑

i=1

|β01j |γ

≥
n∑

i=1

(Yi − x′iβ)2 + λn

kn∑

j=1

|β1j |γ −
n∑

i=1

(Yi −w′
iβ10)

2 − λn

kn∑

i=1

|β01j |γ

=
n∑

i=1

[x′i(β − β0)]
2 − 2

n∑

i=1

εix′i(β − β0) + λn

kn∑

j=1

{|β1j |γ − |β01j |γ}

≡ I1n + I2n + I3n.

On Sj,n, the first term

I1n ≥ nρ1n
22(j−1)

r2
n

.

The third term

I3n = λnγ

kn∑

j=1

|β∗01j |γ−1sgn(β01j)(β1j − β01j),

for some β∗01j between β01j and β1j . By condition (A4) and since we only need to consider β with

‖β − β0‖ ≤ ε, there exists a constant c3 > 0 such that

|I3n| ≤ c3γλn

kn∑

j=1

|β1j − β01j | ≤ c3γλnk1/2
n ‖β − β0‖.

So on Sj,n,

I3n ≥ −c3λnk1/2
n

2j

rn
.

Therefore, on Sj,n,

Ln(β)− Ln(β0) ≥ −|I2n|+ nρ1n
22(j−1)

r2
n

− c3λnk1/2
n

2j

rn
.

25



It follows that

P
(

inf
β∈Sj,n

(Ln(β)− Ln(β0)) ≤ 0
)

≤ P

(
sup

β∈Sj,n

|I2n| ≥ nρ1n
22(j−1)

r2
n

− c3λnk1/2
n

2j

rn

)

≤ 2n1/2p
1/2
n (2j/rn)

nρ1n(22(j−1)/r2
n)− c3λnk

1/2
n (2j/rn)

=
2

2j−2 − c3λnk
1/2
n (npn)−1/2

.

where the second inequality follows from the Markov’s inequality and lemma 1. By (A3a), λnk
1/2
n (npn)−1/2 →

0 as n →∞. So for n sufficiently large,

2j−2 − c3λnk1/2
n (npn)−1/2 ≥ 2j−3

for all j ≥ 3. Therefore,

∑

j≥M,2j≤εrn

P
(

inf
β∈Sj,n

(Ln(β)− Ln(β0)) ≤ 0
)
≤

∑

j≥M

1
2j−2

≤ 2−(M−3),

which converges to zero for every M = Mn →∞. This completes the proof of (10). Combining (8)

and (10), the result follows. This completes the proof of Theorem 1.

Lemma 2 Suppose that 0 < γ < 1. Let β̂n = (β̂
′
1n, β̂

′
2n)′. Under conditions (A1) to (A4),

β̂2n = 0,

with probability converging to 1.

Proof. By Theorem 1, for a sufficiently large C, β̂n lies in the ball {β : ‖β − β0‖ ≤ hnC}

with probability converging to 1. Let β1n = β01 + hnu1 and β2n = β02 + hnu2 = hnu2 with
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‖u‖2
2 = ‖u1‖2

2 + ‖u2‖2
2 ≤ C2. Let

Vn(u1,u2) = Ln(β1n, β2n)− Ln(β10,0) = Ln(β10 + hnu1, hnu2)− Ln(β10,0).

Then β̂1n and β̂2n can be obtained by minimizing Vn(u1,u2) over ‖u‖ ≤ C, except on an event

with probability converging to zero. To prove the lemma, it suffices to show that, for any u1 and

u2 with ‖u‖ ≤ C, if ‖u2‖ > 0,

Vn(u1,u2)− Vn(u1,0) > 0

with probability converging to 1. Some simple calculation shows that

Vn(u1,u2)− Vn(u1, 0) = h2
n

n∑

i=1

(z′iu2)2 + 2h2
n

n∑

i=1

(w′
iu1)(z′iu2)− 2hn

n∑

i=1

εi(z′iu2)

+λnhγ
n

mn∑

j=1

|u2j |γ

≡ II1n + II2n + II3n + II4n.

For the first two terms, we have

II1n + II2n ≥ h2
n

n∑

i=1

(z′iu2)2 − h2
n

n∑

i=1

[(w′
iu1)2 + (z′iu2)2] (11)

= −h2
n

n∑

i=1

(w′
iu1)2

≥ −nh2
nτ2n‖u1‖2

≥ −τ2(pn/ρ2
1n)C2,

where we used condition (A5a) in the last inequality. For the third term, since

E

∣∣∣∣∣
n∑

i=1

εiz′iu2

∣∣∣∣∣ ≤
[
E(

n∑

i=1

εiz′iu2)2
]1/2
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= σ

[
n∑

i=1

u′2ziz′iu2

]1/2

≤ σn1/2ρ
1/2
2n ‖u2‖

≤ σ(npn)1/2C,

we have

II3n = hnn1/2p1/2
n Op(1) = (pn/ρ1n)Op(1). (12)

For the fourth term, we first note that




mn∑

j=1

|u2j |γ



2/γ

≥
mn∑

j=1

|u2j |2 = ‖u2‖2.

Thus

II4n = λnhγ
nO(‖u2‖γ). (13)

Under condition (A3b),

λnhγ
n

(pn/ρ2
1n)

→∞.

Combining (11), (12), and (13), we have for ‖u2‖2 > 0, Vn(u) > 0 with probability converging to

1. This completes the proof of Lemma 2.

Proof of Theorem 2 (i) follows from Lemma 1. We need to prove (ii). Under conditions (A1)

and (A2), β̂n is consistent by Theorem 1. By condition (A4), each component of β̂1n stays away

from zero for n sufficiently large. Thus it satisfies the stationary equation evaluated at (β̂1n, β̂2n),

∂

∂β1

Ln(β̂1n, β̂2n) = 0.
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That is

−2
n∑

i=1

(Yi −w′
iβ̂1n − z′iβ̂2n)wi + λnγψn = 0,

where ψn is a kn × 1 vector whose jth element is |β̂1nj |γ−1sgn(β̂1nj). Since β20 = 0 and εi =

Yi −w′
iβ10, this equation can be written

−2
n∑

i=1

(εi −w′
i(β̂1n − β10)− z′iβ̂2n)wi + λnγψn = 0.

We have

Σ1n(β̂1n − β10) =
1
n

n∑

i=1

εiwi − 1
2n

γλnψn − 1
n

n∑

i=1

z′iβ̂2nwi.

Therefore,

n1/2α′n(β̂1n − β10) = n−1/2
n∑

i=1

εiα
′
nΣ−1

1n wi − 1
2
γn−1/2λnα′nΣ−1

1n ψn − n−1/2
n∑

i=1

z′iβ̂2nwi.

By (i), P(β̂2n = 0) → 1. Thus the last term on the right hand side equals zero with probability

converging to 1. It certainly follows that it converges to zero in probability. When ‖αn‖ ≤ 1, under

condition (A4),

∣∣∣n−1/2α′nΣ−1
1n ψn

∣∣∣ ≤ n−1/2ζ−1
1 ‖αn‖ ·

∥∥∥|β̂1n|−(1−γ)
∥∥∥ ≤ 2n−1/2τ−1

1 k1/2
n b

−(1−γ)
0 ,

except on an event with probability converging to zero. Under condition (A3a), we have λn(kn/n)1/2 →

0. Therefore,

n1/2s−1
n α′n(β̂1n − β10) = n−1/2s−1

n

n∑

i=1

εiα
′
nΣ−1

1n wi + op(1). (14)

We verify the conditions of the Lindeberg-Feller central limit theorem.
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Let vi = n−1/2s−1
n α′nΣ−1

1n wi and wi = εivi. First,

Var

(
n∑

i=1

wi

)
= n−1σ2s−2

n

n∑

i=1

α′nΣ−1
1n wiw′

iΣ
−1
1n αn = s−2

n s2
n = 1.

For any ε > 0,
n∑

i=1

E[w2
i 1{|wi| > ε}] = σ2

n∑

i=1

v2
i Eε2

i 1{|εivi| > ε}.

Since

σ2
n∑

i=1

v2
i = n−1σ2s−2

n

n∑

i=1

(α′nΣ−1
1n wiw′

iΣ
−1
1n αn) = 1,

it suffices to show that

max
1≤i≤n

Eε2
i 1{|εivi| > ε} → 0,

or equivalently

max
1≤i≤n

|vi| = n−1/2s−1
n max

1≤i≤n
|α′nΣ−1

1n wi| → 0. (15)

Since |α′nΣ−1
1n wi| ≤ (α′nΣ−1

1n αn)1/2(w′
iΣ
−1
1n wi)1/2, and s−1

n = σ−1(αnΣ−1
1n αn)−1/2, we have

max
1≤i≤n

|vi| ≤ σ−1n−1/2 max
1≤i≤n

(w′
iΣ
−1
1n wi)1/2

≤ σ−1τ
−1/2
1 n−1/2 max

1≤i≤n
(w′

iwi)1/2,

(15) follows from assumption (A5). This completes the proof of Theorem 2.

Lemma 3 (Knight and Fu, 2000) Let g(u) = u2− 2au + λ|u|γ where a 6= 0, λ ≥ 0, and 0 < γ < 1.

Denote

cγ =
(

2
2− γ

)(
2(1− γ)
2− γ

)1−γ

.
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Suppose that a 6= 0. Then arg min(g) = 0 if and only if,

λ > cγ |a|2−γ .

Let ψ2(x) = exp(x2) − 1. For any random variable X its ψ2-Orlicz norm ‖X‖ψ2 is defined as

‖X‖ψ2 = inf{C > 0 : Eψ2(|X|/C) ≤ 1}. Orlicz norm is useful for obtaining maximal inequalities,

see Van der Vaart and Wellner (1996), Section 2.2.

Lemma 4 Let c1, . . . , cn be constants satisfying
∑n

i=1 c2
i = 1, and let W =

∑n
i=1 ciεi.

(i) Under condition (A1), ‖W‖ψ2 ≤ K2[σ + ((1 + K)C−1)1/2] where K2 is a constant.

(ii) Let W1, . . . , Wm be random variables with the same distribution as W . For any wn > 0,

P
(

wn > max
1≤j≤m

|Wj |
)
≥ 1− (log 2)1/2K(log m)1/2

wn

for a constant K not depending on n.

Proof. (i) Without loss of generality, assume ci 6= 0, i = 1, . . . , n. First, because εi is sub-Gaussian,

its Orlicz norm ‖εi‖ψ2 ≤ [(1 + K)/C]1/2 (Lemma 2.2.1, VW 1996). By Proposition A.1.6 of VW

(1996), there exists a constant K2 such that

∥∥∥∥∥
n∑

i=1

ciεi

∥∥∥∥∥
ψ2

≤ K2



E|

n∑

i=1

ciεi|+
[

n∑

i=1

‖ciεi‖2
ψ2

]1/2




≤ K2



σ +

[
(1 + K)C−1

n∑

i=1

c2
i

]1/2




= K2[σ + ((1 + K)C−1)1/2].

(ii) By Lemma 2.2.2 of Van der Vaart and Wellner (1996),

‖ max
1≤j≤qn

Wi‖ψ2 ≤ K(log m)1/2
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for a constant K. Because E|W | ≤ (log 2)1/2‖W‖ψ2 for any random variable W , we have

E( max
1≤j≤mn

|Wj |) ≤ (log 2)1/2K(log m)1/2

for a constant K. By the Markov inequality, we have

P
(

wn > max
1≤j≤m

|Wj |
)

= 1− P
(

max
1≤j≤mn

|Wj | ≥ wn

)
≥ 1− (log 2)1/2K(log m)1/2

wn
.

This completes the proof.

Proof of Theorem 3 Recall ξnj = n−1
∑n

i=1(w
′
iβ10)xij as defined in (5). Let aj = (x1j , . . . , xnj)′.

Write

Un(β) =
pn∑

j=1

n∑

i=1

(yi − xijβj)2 + λn

pn∑

j=1

|βj |γ

=
pn∑

j=1

n∑

i=1

(εi + w′
iβ10 − xijβj)2 + λn

pn∑

j=1

|βj |γ

=
pn∑

j=1

[
n∑

i=1

ε2
i +

n∑

i=1

x2
ijβ

2
j − 2

n∑

i=1

(εi + w′
iβ10)xijβj + λn|βj |γ

]

=
pn∑

j=1

[
n∑

i=1

ε2
i + nβ2

j − 2(ε′naj + nξnj)βj + λn|βj |γ
]

.

So minimizing Un is equivalent to minimizing

pn∑

j=1

[
nβ2

j − 2(ε′naj + nξnj)βj + λn|βj |γ
]
.

Let

gj(βj) ≡ nβ2
j − 2(ε′naj + nξnj)βj + λn|βj |γ , j = 1, . . . , pn.
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By Lemma 3, βj = 0 is the only solution to gj(βj) = 0 if and only if

n−1λn > cγ(n−1|ε′naj + nξnj |)2−γ .

Let wn = c
−1/(2−γ)
γ (λn/nγ/2)1/(2−γ). This inequality can be written

wn > n−1/2|ε′naj + nξnj |. (16)

To prove the theorem, it suffices to show that

P
(

wn > n−1/2 max
j∈Jn

|ε′naj + nξnj |
)
→ 1, (17)

and

P
(

wn > n−1/2 min
j∈Kn

|ε′naj + nξnj |
)
→ 0. (18)

We first prove (17). By condition (B2a), there exists a constant c0 > 0 such that

∣∣∣∣∣n
−1/2

n∑

i=1

xijxik

∣∣∣∣∣ ≤ c0, j ∈ Jn, k ∈ Kn,

for all n sufficiently large. Therefore,

n1/2|ξnj | = n−1/2

∣∣∣∣∣
n∑

i=1

w′
iβ10xij

∣∣∣∣∣

= n−1/2

∣∣∣∣∣
kn∑

k=1

n∑

i=1

xikxijβ0k

∣∣∣∣∣

≤ n−1/2b1

kn∑

l=1

∣∣∣∣∣
n∑

i=1

xikxij

∣∣∣∣∣
≤ b1c0kn, (19)
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where b1 is given in condition (B4). Let c1 = b1c0. By (16) and (19), we have

P(wn > n−1/2 max
j∈Jn

|ε′naj + nξnj |) ≥ P(wn > n−1/2 max
j∈Jn

|ε′naj |+ n1/2 max
j∈Jn

|ξnj |)

≥ P(wn > n−1/2 max
j∈Jn

|ε′naj |+ c1kn|)

= P(n−1/2 max
j∈Jn

|ε′naj | < wn − c1kn)

= 1− P(n−1/2 max
j∈Jn

|ε′naj | ≥ wn − c1kn)

≥ 1− E(n−1/2 maxj∈Jn |ε′naj |)
wn − c1kn

. (20)

By Lemma 4 (i), n−1/2ε′naj is sub-Gaussian, 1 ≤ j ≤ mn. By condition (B3a),

kn

wn
=

(
k

(2−γ)
n

λnn−γ/2

)1/(2−γ)

→ 0. (21)

Thus by Lemma 4 (ii), combining (20) and (21), and by condition (B3b),

P(wn > n−1/2 max
j∈Jn

|ε′naj + nξnj |) ≥ 1− (log 2)1/2K(log mn)1/2

wn − c1kn

= 1− (log 2)1/2K(log mn)1/2

wn(1− c1kn/wn)

→ 1.

This proves (17).

We now prove (18). We have

P(wn > min
j∈Kn

|n−1/2ε′naj + n1/2ξnj |) = P


 ⋃

j∈Kn

{
|n−1/2ε′naj + n1/2ξnj | < wn

}



≤
∑

j∈Kn

P
(
|n−1/2ε′naj + n1/2ξnj | < wn

)
. (22)
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Write

P
(
|n−1/2ε′naj + n1/2ξnj | < wn

)
= 1− P

(
|n−1/2ε′naj + n1/2ξnj | ≥ wn

)
. (23)

By condition (B2b), minj∈Kn |ξnj | ≥ ξ0 > 0 for all n sufficiently large. By Lemma 4, n−1/2ε′naj are

sub-Gaussian. We have

P
(
|n−1/2ε′naj + n1/2ξnj | ≥ wn

)
≥ P(n1/2|ξnj | − n−1/2|ε′nai| ≥ wn)

= 1− P(n−1/2|ε′nai| > n1/2|ξnj | − wn)

≥ 1−K exp[−C(n1/2ξ0 − wn)2]. (24)

By (22), (23) and (24), we have

P(wn > min
j∈Kn

|n−1/2ε′naj + n1/2ξnj |) ≤ knK exp[−C(n1/2ξ0 − wn)2].

By condition (B3a), we have

wn

n1/2
= O(1)

(
λnn−γ/2

n(2−γ)/2

)1/(2−γ)

= O(1)(λn/n)1/(2−γ) = o(1).

Therefore,

P(wn > min
j∈Kn

|n−1/2ε′naj + n1/2ξnj |) = O(1)kn exp(−Cn) = o(1),

where the last equality follows from condition (B3a). Thus (18) follows. This completes the proof

of Theorem 3.

Proof of Theorem 4. By Theorem 3, Conditions (B1) to (B4) ensures that the marginal bridge

estimator correctly select covariates with nonzero and zero coefficients with probability converging

to one. Therefore, for asymptotic analysis, the second step estimator β̂
∗
n can be defined as the

value that minimizes U∗
n defined by (6). We now can prove Theorem 4 in two steps. First, under
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conditions (B1a) and (B6), consistency of β̂
∗
1n follows from the same argument as in the proof of

Theorem 1. Then under conditions (B1a), (B5) and (B6), asymptotic normality can be proved the

same way as in the proof of Theorem 2. This completes the proof of Theorem 4.
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Table 1. Simulation study: comparison of OLS, RR, LASSO, Elastic net and the bridge estimator
with γ = 1/2. PMSE: median of PMSE, inside “()” are the corresponding standard deviations.
Covariate: median of number of covariates with nonzero coefficients.

Example OLS RR LASSO ENet bridge
1 PMSE 3.32(0.58) 3.51(0.69) 2.92(0.51) 2.80(0.47) 2.95(0.51)

Covariate 30 30 23 22 17
2 PMSE 3.21(0.53) 2.65(0.41) 2.60(0.40) 2.46(0.35) 2.37(0.36)

Covariate 30 30 18 16 15
3 PMSE 36.70(6.06) 31.02(4.67) 30.83(4.91) 29.50(4.38) 29.31(4.33)

Covariate 30 30 19 18 13
4 PMSE 36.35(6.09) 27.52(4.21) 28.04(4.14) 27.13(3.90) 26.18(3.75)

Covariate 30 30 13 13 15
5 PMSE 3.26(0.58) 3.34(0.58) 2.66(0.40) 2.38(0.33) 2.31(0.34)

Covariate 30 30 18 15 15
6 PMSE – 20.45(2.02) 3.55(0.64) 3.30(0.53) 3.98(0.83)

Covariate – 200 37 37 29
7 PMSE – 5.80(1.31) 2.71(0.42) 2.50(0.36) 2.64(0.44)

Covariate – 200 25 16 15
8 PMSE – 68.94(10.92) 35.08(5.83) 31.85(5.20) 33.72(6.42)

Covariate – 200 32 27 15
9 PMSE – 64.45(12.90) 28.65(4.54) 26.26(3.82) 29.18(4.39)

Covariate – 200 21 14 15
10 PMSE – 43.10(2.23) 3.51(0.57) 2.70(0.49) 2.68(0.39)

Covariate – 500 43 20 17
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Table 2. Simulation study: comparison of OLS with the first 15 covariates (OLS-oracle), bridge
estimate with the first 15 covariates (bridge-oracle) and bridge estimate with all covariates. For
each model, the first row: median of absolute bias (across the 15 covariates), and median of variance
(across the 15 covariates); the second row: median of EMSE and standard deviation of EMSE.

Example OLS-oracle Bridge-oracle Bridge
1 bias/sd 0.007, 0.047 0.019, 0.045 0.035, 0.020

EMSE 0.647, 0.306 0.625, 0.305 0.702, 0.311
2 bias/sd 0.014, 0.509 0.114, 0.053 0.024, 0.018

EMSE 7.252, 3.707 0.910, 1.109 0.990, 0.738
3 bias/sd 0.006, 0.511 0.165, 0.288 0.061, 0.074

EMSE 6.805, 3.423 4.339, 1.717 4.313, 2.073
4 bias/sd 0.047, 5.604 0.115, 0.284 0.047, 0.075

EMSE 75.43, 42.96 2.977, 6.236 2.174, 3.706
5 bias/sd 0.041, 2.041 0.026, 0.080 0.028, 0.007

EMSE 30.15, 14.01 0.163, 3.468 0.133, 0.898
6 bias/sd 0.006, 0.043 0.014, 0.042 0.061, 0.062

EMSE 0.655, 0.293 0.662, 0.281 1.186, 0.849
7 bias/sd 0.036, 0.535 0.133, 0.051 0.050, 0.467

EMSE 7.077, 3.565 1.179, 0.714 7.013, 3.629
8 bias/sd 0.030, 0.473 0.131, 0.254 0.119, 0.451

EMSE 6.460, 3.477 4.086, 1.553 6.678, 2.967
9 bias/sd 0.140, 5.690 0.177, 0.275 0.053, 5.529

EMSE 76.32, 37.67 3.036, 4.935 72.07, 40.71
10 bias/sd 0.035, 1.928 0.027, 0.078 0.072, 1.923

EMSE 28.90, 12.46 0.218, 2.967 28.43, 12.65
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Figure 1: Simulation study (examples 1–6): probability of individual covariate effect being correctly
identified. Blue circle: LASSO; Green triangle: ENet; Red “+”: Bridge estimate.
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Figure 2: Simulation study (examples 7–10): probability of individual covariate effect being cor-
rectly identified. Blue circle: LASSO; Green triangle: ENet; Red “+”: Bridge estimate.
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